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2.4 Vitesse et accélération
en coordonnées cylindriques 

• Point matériel 𝑃 en mouvement

• Coordonnées cylindriques :

• Position, vitesse et accélération dans ce repère :

• Base (repère) en rotation associé aux 

coordonnées cylindriques du point 𝑃 : 

• Vitesse angulaire de rotation de la base:

𝑂 Ƹ𝑒𝜌 Ƹ𝑒 Ƹ𝑒𝑧

Ԧ𝑟

ො𝑥
ො𝑦

Ƹ𝑧
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2.4 Vitesse et accélération
en coordonnées cylindriques 

Ԧ𝑟 = 𝜌 Ƹ𝑒𝜌 + 𝑧 Ƹ𝑒𝑧

ሶԦ𝑟 = ሶ𝜌 Ƹ𝑒𝜌+ 𝜌 ሶƸ𝑒𝜌 + ሶ𝑧 Ƹ𝑒𝑧+ 𝑧 ሶƸ𝑒𝑧

ሶԦ𝑒 = 𝜔  Ԧ𝑒𝑖

Application de la formule de Poisson 

aux vecteurs de base

Ԧ𝑟

ሶƸ𝑒𝜌= 𝜔  Ƹ𝑒𝜌= ሶ Ƹ𝑧  Ƹ𝑒𝜌= ሶ Ƹ𝑒


ሶƸ𝑒𝑧= 𝜔  Ƹ𝑒𝑧= ሶ Ƹ𝑧  Ƹ𝑒𝑧 = 0

ሶƸ𝑒

= 𝜔  Ƹ𝑒= ሶ Ƹ𝑧  Ƹ𝑒


= - ሶ Ƹ𝑒𝜌

ሶԦ𝑟 = ሶ𝜌 Ƹ𝑒𝜌+ 𝜌 ሶ Ƹ𝑒


+ ሶ𝑧 Ƹ𝑒𝑧

ሷԦ𝑟 = ሷ𝜌 Ƹ𝑒𝜌+ ሶ𝜌 ሶƸ𝑒𝜌+ ሶ𝜌 ሶ Ƹ𝑒

+ 𝜌 ሷ Ƹ𝑒


+ 𝜌 ሶ ሶƸ𝑒


+ ሷ𝑧 Ƹ𝑒𝑧+ ሶ𝑧 ሶƸ𝑒𝑧=

= ( ሷ𝜌- 𝜌 ሶ2) Ƹ𝑒𝜌 + (2 ሶ𝜌 ሶ+ 𝜌 ሷ) Ƹ𝑒


+ ሷ𝑧 Ƹ𝑒𝑧

= ሷ𝜌 Ƹ𝑒𝜌+ ሶ𝜌 ሶ Ƹ𝑒

+ ሶ𝜌 ሶ Ƹ𝑒


+ 𝜌 ሷ Ƹ𝑒


- 𝜌 ሶ2 Ƹ𝑒𝜌 + ሷ𝑧 Ƹ𝑒𝑧=

Calcule avec formule de Poisson:

ሶԦ𝑒𝑖= 𝜔  Ԧ𝑒𝑖

ො𝑥

ො𝑦

Ƹ𝑧
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2.4 Vitesse et accélération 
en coordonnées cartésiennes et  cylindriques 

Complément

⇒

repère fixe ⇒

→ voir document “Cinématique

et systèmes de coordonnées”

sur Moodle

ො𝑥

ො𝑦

Ƹ𝑧

Vecteurs du repère 
en coordonnées cylindriques:





2.2 Ex.: coordonnées cylindriques

mouvement d’un satellite autour de la Terre

https://doi.org/10.1155/2019/5316396

Ƹ𝑒𝑥

Ƹ𝑒𝑦

Ƹ𝑒𝑧

𝑂
Ƹ𝑒𝜌

Ƹ𝑒


Ƹ𝑒𝑧
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2.5 Vitesse et accélération
en coordonnées sphériques 

• Point matériel P en mouvement

• Coordonnées sphériques:

• Base (repère) en rotation associé aux 

coordonnées sphériques du point P: 

• Vitesse angulaire de rotation du repère:

𝑂 Ƹ𝑒𝜌 Ƹ𝑒


Ƹ𝑒𝑧

• Une rotation infinitésimale du vecteur Ԧ𝑟 est composée de

- une rotation infinitésimale d’angle 𝑑𝜙 autour de l’axe Ƹ𝑧:

- une rotation infinitésimale d’angle 𝑑𝜃 autour de Ƹ𝑒

:

⇒ rotation infinitésimale totale :

𝑑 Ԧ𝑟


= 𝑑 𝑟 sin 𝜃 Ƹ𝑒


= ሶ 𝑑𝑡 Ƹ𝑧Ԧ𝑟

𝑑 Ԧ𝑟𝜃 = 𝑑𝜃 𝑟 Ƹ𝑒𝜃 = ሶ𝜃 𝑑𝑡 Ƹ𝑒

Ԧ𝑟

𝑑 Ԧ𝑟 = 𝑑 Ԧ𝑟𝜃 + 𝑑 Ԧ𝑟


= ሶ𝜃𝑑𝑡 Ƹ𝑒

 Ԧ𝑟 + ሶ 𝑑𝑡 Ƹ𝑧 Ԧ𝑟 

𝑑 Ԧ𝑟

𝑑𝑡
= Ԧ𝑣 = ሶ𝜃 Ƹ𝑒


 Ԧ𝑟 + ሶ Ƹ𝑧 Ԧ𝑟 = ( ሶ𝜃 Ƹ𝑒


+ ሶ Ƹ𝑧) Ԧ𝑟 = 𝜔 Ԧ𝑟

𝜔 = ሶ𝜃 Ƹ𝑒


+ ሶ Ƹ𝑧

𝑃(𝑟, 𝜃, 𝜙)

ො𝑥

ො𝑦

Ƹ𝑧
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2.5 Vitesse et accélération
en coordonnées sphériques (suite) 

• Vitesse angulaire de rotation du repère :

• Formule de Poisson appliquée aux vecteurs de base :

• Position, vitesse et accélération dans ce repère :

accélération radiale

accélération méridienne

accélération transverse

𝜔 = ሶ𝜃 Ƹ𝑒


+ ሶ Ƹ𝑧

𝑃(𝑟, 𝜃, 𝜙)

ො𝑥

ො𝑦

Ƹ𝑧



• Point matériel restreint à se déplacer sur un support, par exemple 

une courbe ou une surface lisse (fixe ou en mouvement)

- Exemples: 
- Pendule mathématique, contraint à rester à une distance constante 

d’un point fixe (i.e. sur une surface sphérique centrée sur ce point)

- Wagonnet d’un « grand huit », qui ne doit pas dérailler

- Goutte d’eau coulant sur le pare-brise d’une voiture

- Bille dans un anneau en rotation

• Force de liaison = force exercée sur le point matériel
pour qu’il obéisse à une contrainte géométrique

- toujours perpendiculaire au support

- la force de liaison devient nulle ⇔ la contrainte disparaît
- Souvent on ne spécifie pas le mécanisme qui exerce la contrainte

(tout ce passe comme si la surface ou la courbe exerçait la force de liaison)

- Le force de liaison est a priori inconnue; elle fait partie du problème à résoudre 

26

2.6 Contraintes et forces de liaison

La dynamique est une discipline de la mécanique classique qui étudie les corps en 

mouvement sous l'influence des actions mécaniques (ou forces) qui leur sont appliquées

Déjà rencontrée: force de pesanteur et frottement avec l’air
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2.6 Ex.: Plan incliné sans frottement

Projection sur axe x: 𝐹𝑥 = 0
Projection sur axe y: 𝐹𝑦 = 𝑚𝑔cos𝛼 − 𝑁 = 0

Projection sur axe z: 𝐹𝑧 = −𝑚𝑔sin𝛼 = 𝑚𝑎𝑧

𝑁 = force de « liaison » qui

contraint le point matériel a

rester sur le plan incliné

(perpendiculaire au plan) 

a

a

ො𝑥

ො𝑦

Ƹ𝑧

𝑥(𝑡) = 𝑥0

𝑦 𝑡 = 0; 𝑁 𝑡 = 𝑚𝑔 cos 𝛼

𝑧 𝑡 = 𝑧0 −
1

2
𝑔 sin 𝛼 𝑡2

𝑁
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2.6 Ex.: le pendule mathématique

Quiz

1) Est ce que la période d’oscillation d’un pendule dépend de la masse?

2) Est-ce que la période d’oscillation dépende de l’angle initiale ?

Une masse P, que on considère punctiforme, est attachée 

avec une ficelle de masse négligeable au point O. 

On bouge la masse P tel que la ficelle forme un angle 0

avec la vertical à t0 = 0. 

A l’instant t0 = 0 on laisse la masse P libre de osciller

→ démo→ demo 286

O

ො𝑥

ො𝑦

Ԧ𝐹 = 𝑚 Ԧ𝑔

𝑇
L

P

La contrainte ou force de liaison est représentée par la ficelle. 

Si on part avec la ficelle tendue, la ficelle oblige la masse P à 

suivre un arc de circonférence (𝑇 = tension de la ficelle)

https://auditoires-physique.epfl.ch/experiment/16/influence-de-lamplitude-dun-pendule-gravite-sur-la-frequence
https://auditoires-physique.epfl.ch/experiment/286/pendules-simples-masses-differentes
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2.6 Ex.: le pendule mathématique

On essaye de trouver la solution en utilisant le 

repère fixe

Repère cartésien fixe: 𝑂 ො𝑥 ො𝑦

൞
cos𝑇 ∙ ො𝑥 + 𝑚 Ԧ𝑔 ∙ ො𝑥 = 𝑚 ሷ𝑥 ො𝑥

sin𝑇 ∙ ො𝑦 = 𝑚 ሷ𝑦 ො𝑦

ቐ
−𝑇(𝑡) cos + 𝑚 𝑔 = 𝑚 ሷ𝑥

−𝑇(𝑡) sin = 𝑚 ሷ𝑦


Solution compliquée parce que la tension T(t) et l’angle (t) sont des fonctions du temps

O

ො𝑥

ො𝑦

Ԧ𝐹 = 𝑚 Ԧ𝑔

𝑇
L

P
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2.6 Ex.: le pendule mathématique

Galilée observe par premier que la période d’oscillation 

d’un pendule ne dépend pas de 𝑚

Repère cartésien fixe:

Repère en rotation: 𝑂 Ƹ𝑒𝜌 Ƹ𝑒

𝑂 ො𝑥 ො𝑦

Pour des petites oscillations  → 0  sin~  ሷ = −
𝑔

𝐿


Equation d’un oscillateur harmonique

 t = Acos(𝜔0𝑡 + 𝜑0) de période 𝑇 =
2𝜋

𝜔
0

= 2𝜋
𝐿

𝑔

൞
𝑇 ∙ Ƹ𝑒𝜌 + 𝑚 Ԧ𝑔 ∙ Ƹ𝑒𝜌 = 𝑚( ሷ𝜌 − 𝜌 ሶ2) Ƹ𝑒𝜌

𝑚 Ԧ𝑔 ∙ Ƹ𝑒


= 𝑚(ρ ሷ + 2 ሶρ ሶ) Ƹ𝑒


൞
−𝑇 + 𝑚 𝑔 cos = 𝑚𝐿 ሶ2

− 𝑚 𝑔 sin = 𝑚𝐿 ሷ


෍ Ԧ𝐹 = 𝑚 Ԧ𝑎2ème loi de Newton

− 𝑔 sin  = 𝐿 ሷLe mouvement du pendule ne dépend pas de la masse 

Ԧ𝑎 = ሷԦ𝑟 = ( ሷ𝜌- 𝜌 ሶ2) Ƹ𝑒𝜌 + (2 ሶ𝜌 ሶ+ 𝜌 ሷ) Ƹ𝑒


+ ሷ𝑧 Ƹ𝑒𝑧En coordonnées cylindriques

O

ො𝑥

ො𝑦

Ԧ𝐹 = 𝑚 Ԧ𝑔

𝑇
L

P
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2.6 Ex.: Luge sur une piste cylindrique

plan 
horizontal

ve
rt

ic
al

e

Projection ⏊ Ƹ𝑧

𝑚𝑔 cos 𝛼

𝑁 ∙ Ƹ𝑒𝜌 + 𝑚 Ԧ𝑔 ∙ Ƹ𝑒𝜌 = 𝑚( ሷ𝜌 − 𝜌 ሶ2) Ƹ𝑒𝜌

𝑚 Ԧ𝑔 ∙ Ƹ𝑒 = 𝑚(ρ ሷ + 2 ሶρ ሶ) Ƹ𝑒


𝑚 Ԧ𝑔 ∙ Ƹ𝑒𝑧 = 𝑚 ሷ𝑧 Ƹ𝑒𝑧

−𝑁 + 𝑚 𝑔 cos 𝛼 cos = −𝑚𝑅 ሶ2

− 𝑚 𝑔 cos 𝛼 sin = 𝑚𝑅 ሷ

−𝑚 𝑔 sin 𝛼 = 𝑚 ሷ𝑧

Ԧ𝑎 = ሷԦ𝑟 = ( ሷ𝜌- 𝜌 ሶ2) Ƹ𝑒𝜌 + (2 ሶ𝜌 ሶ+ 𝜌 ሷ) Ƹ𝑒


+ ሷ𝑧 Ƹ𝑒𝑧

En coordonnées cylindriques

Contrainte: la luge reste sur la piste

Repère cartésien fixe: 𝑂 ො𝑥 ො𝑦 Ƹ𝑧

Repère en rotation: 𝑂 Ƹ𝑒𝜌 Ƹ𝑒


Ƹ𝑒𝑧

𝜌 = 𝑅 ሶ𝜌 = 0 ሷ𝜌 = 0

෍ Ԧ𝐹 = 𝑚 Ԧ𝑎 

ො𝑥

ො𝑦

ො𝑥

Ƹ𝑧

ො𝑦 Pas de support en direction Ƹ𝑒


(𝑁 ∙ Ƹ𝑒


= 0) 𝑒𝑡 Ƹ𝑒𝑧 (𝑁 ∙ Ƹ𝑒𝑧 = 0) 
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2.6 Ex.: Luge sur une piste cylindrique

plan 
horizontal

ve
rt

ic
al

e

−𝑁 + 𝑚 𝑔 cos 𝛼 cos = −𝑚𝑅 ሶ2

− 𝑚 𝑔 cos 𝛼 sin = 𝑚𝑅 ሷ

−𝑚 𝑔 sin 𝛼 = 𝑚 ሷ𝑧

eq. (1)

eq. (2)

eq. (3)

eq. (3)  Mouvement uniformément accéléré 𝑧 𝑡 = −
1

2
𝑔 sin 𝛼 𝑡2

eq. (2) 
Mouvement du pendule (petites oscil.)

𝑇 =
2𝜋

𝜔
= 2𝜋

𝑔 cos 𝛼

𝑅

eq. (1)  Réaction de la paroi de la piste en fonction du temps: 

ሷ = −
𝑔

𝑅
cos 𝛼

𝑁 𝑡 = 𝑚 𝑔 cos 𝛼 cos + 𝑚𝑅 ሶ2

ො𝑥

Ƹ𝑧

ො𝑦

 t = Acos(𝜔𝑡 + 𝜑0)
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2.6 Ex.: Bille en équilibre dans un tube 

circulaire en rotation

→ démo: glissière hémisphérique 457

𝜔

Deux balles de masse différente dans une glissière tournante: la quelle monte plus haut?

1) La plus légère

2) La plus lourde

3) identique

https://auditoires-physique.epfl.ch/experiment/457/glissiere-hemispherique-sur-tige
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2.6 Ex.: Bille en équilibre dans un tube 

circulaire en rotation

→ démo: glissière hémisphérique 457

Contrainte: la bille reste sur l’anneau

Forces s’exerçant sur la bille:

- Poids de la bille: 𝑚 Ԧ𝑔 = 𝑚𝑔 cos(𝜋 − 𝜃) Ƹ𝑒𝑟 + 𝑚𝑔 sin(𝜋 − 𝜃) Ƹ𝑒𝜃

- Force de liaison: 𝑁 = 𝑁𝑟 Ƹ𝑒𝑟 + 𝑁


Ƹ𝑒


Repère cartésien fixe: 𝑂 ො𝑥 ො𝑦 Ƹ𝑧

Repère en rotation: 𝑂 Ƹ𝑒𝑟 Ƹ𝑒𝜃 Ƹ𝑒


Coordonnées sphériques: 𝑟, 𝜃, 𝜙

bille en équilibre: ሶ𝜃 = 0; ሷ𝜃 = 0

anneau de rayon R en 
rotation autour de Ƹ𝑧: 𝜔 = ሶ Ƹ𝑧

bille de 
masse m

ො𝑥

ො𝑦

Ƹ𝑧

Pas de support en direction Ƹ𝑒𝜃 (𝑁 ∙ Ƹ𝑒𝜃 = 0)

https://auditoires-physique.epfl.ch/experiment/457/glissiere-hemispherique-sur-tige
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Ԧ𝑎 = ሷԦ𝑟 = ሷ𝑟 − 𝑟 ሶ𝜃2 − 𝑟 ሶ2sin2𝜃 Ƹ𝑒𝑟

+ 𝑟 ሷ𝜃 + 2 ሶ𝑟 ሶ𝜃 − 𝑟 ሶ2 sin 𝜃 cos 𝜃 Ƹ𝑒𝜃

+(𝑟 ሷ sin 𝜃 + 2 ሶ𝑟 ሶ sin 𝜃 + 2𝑟 ሶ ሶ𝜃 cos 𝜃) Ƹ𝑒


2.6 Ex.: Bille en équilibre dans un tube 

circulaire en rotation

Coordonnées 

sphériques

𝑁 ∙ Ƹ𝑒𝑟 + 𝑚 Ԧ𝑔 ∙ Ƹ𝑒𝑟 = 𝑚 ሷ𝑟 − 𝑟 ሶ𝜃2 − 𝑟 ሶ2sin2𝜃 Ƹ𝑒𝑟

𝑁 ∙ Ƹ𝑒𝜃 + 𝑚 Ԧ𝑔 ∙ Ƹ𝑒𝜃 = 𝑚 𝑟 ሷ𝜃 + 2 ሶ𝑟 ሶ𝜃 − 𝑟 ሶ2 sin 𝜃 cos 𝜃 Ƹ𝑒𝜃

𝑁 ∙ Ƹ𝑒


+ 𝑚 Ԧ𝑔 ∙ Ƹ𝑒


= 𝑚(𝑟 ሷ sin 𝜃 + 2 ሶ𝑟 ሶ sin 𝜃 + 2𝑟 ሶ ሶ𝜃 cos 𝜃) Ƹ𝑒


෍ Ԧ𝐹 = 𝑚 Ԧ𝑎



𝑁𝑟 − 𝑚𝑔 cos 𝜃 = −𝑚𝑟 ሶ2sin2𝜃

𝑚𝑔 sin 𝜃 = −𝑚𝑟 ሶ2 sin 𝜃 cos 𝜃

𝑁


= 0



Solutions possibles:

1) sin 𝜃=0  ( 𝜃=0 ou 𝜋), 

𝑁𝑟 = 𝑚𝑔, bille sur l’axe vertical

2) cos 𝜃 = −
𝑔

𝑟𝜔2, cos 𝜋 − 𝜃 =
𝑔

𝑟𝜔2 ≤ 1 

𝜔 ≥
𝑔

𝑅
;   𝜔 → ∞ 𝜃 →

𝜋

2

anneau de rayon R en 
rotation autour de Ƹ𝑧: 𝜔 = ሶ Ƹ𝑧

bille de 
masse m

ො𝑥

ො𝑦

Ƹ𝑧

bille en équilibre: ሶ𝜃 = 0; ሷ𝜃 = 0
Contraintes: ሶ𝑟 = 0; ሷ𝑟 = 0; ሶ = 𝜔;

ሷ = 0; 𝑁 ∙ Ƹ𝑒𝜃 = 0






