- Point materiel P en mouvement
- Coordonnées cylindriques :

- Base (repere) en rotation associeé aux

2.4 Vitesse et accéleration
en coordonnées cylindriques

p=p(t) >0 T = pcosg
¢=¢(t) <l0,2n] y =psing
z = z(t) 2

coordonneées cylindriques du point P : Oép éd) é

=D

- Vitesse angulaire de rotation de la base: & = (‘;—fg = @3

- Position, vitesse et accélération dans ce repere :

QR S 3

= ﬁ% peE, + z€, U - €, = vitesse radiale

. U - €4 = Vitesse transverse
=T = pep + p¢e¢ + 2€; a - €, = accélération radiale
=7=(p— p¢2)6p (p¢ + 2p¢>)6¢ +2zé, | a- €4 = accélération transverse
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2.4 Vitesse et accéleration
en coordonnées cylindriques

Calcule avec formule de Poisson:
S — -
€=W A €;

r= pé,+ze,

r=peé tpé,+zé,+zé,

7 =pé,+ppé, + 28,
Application de la formule de Poisson
aux vecteurs de base
7= pé + pé +phé st pé,t phé, + 76+ 76 = . é=ang
= Pé + PPE+pPé s+ pdéy- pd?é  + Zé = ’ p
=(p- pg?) €, + (2pp+ pp)é, +7¢,
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Complément

2.4 \/itesse et accélération

en coordonnees cartésiennes et _cylindriques

Z
Fz(ﬁ=$i—|— y+ z 2z \ . T=1y=2=0
7Y repére fixe=> 7Y~
m:y:z:o
L, .o o df d, . . . d . d, . d,
=r=—=— = —(rx - -2z
F=i= = (zi+yf+2d) = (ed)+ (i) + - (22) P
=$':f:—|—:c_inf! +99+ vy +éﬁ+,::%, = | F=ti+yg+2i2 9 -
o= = - r=iZ+ijj+z2 5
=TT+yYy+zz. qj y
P

T = pcos ¢ izpcosqb—pqﬁsind)
y = psing g}=,ésin¢—|—pqﬁcosd)
z2=2 7=z

Vecteurs du repere
en coordonnées cylindriques:

— voir document “Cinématique
et systemes de coordonnées”
sur Moodle

=

T = pcoso — quésinqb—pésinqb—pqﬁzcosqﬁ
ij = psined + 2p¢ cos ¢ + pd cos ¢ — pd? sin ¢

Z=12z

T =cosdé, —singpéy =
y=singe,+cosgeéy

r=xT+yy+zz
= pcos¢[cos pé, —singpéyl + psing [singé, + cospéyl + z €.

=péy,+ z€;

TT+yyt+zz

T

= pé,+pdé,+ ié,

F=if+ijj+35= (ﬁcosgﬁa— 2p¢sin ¢ — pdsin d — pe? cos¢) [cos @ €, — sin ¢ é,)

- (ﬁsinq‘)—i— 200 cos ¢ + pd cos ¢ — pd? Sinqﬁ) [singé,+cospéy) + 2¢é,

= (b= p8*) &+ (pb+200) &+ 26,

(,écosq’) — ppsin ¢ [cos @ é, — sin ¢ é,] + (,(Jsinqz&—i—pqﬁcos gf;) [sinpé, + cospéy] + 2¢€,
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2.2 EX.: coordonnées cylindriques

mouvement d’un satellite autour de la Terre

Nominal orbit

https://doi.org/10.1155/2019/5316396



2.5 Vitesse et accéleration
en coordonneées spheériques

A A v
- Point matériel P en mouvement z
- Coordonnées spheériques: )
N er
r=r(t) >0 x = rsinf cos ¢ S
0=0(t) €][0,r] y = rsinfsin ¢ S ég
6=¢(t) €l0,2n| z=rcosf 9/ \P(r.0,¢)
~/ T '\ 4
1 \ €0
. : ., O | R
- Base (repere) en rotation associée aux o i ~
coordonnées spherigues du point P: 0é,¢,é, 0 | Y

X
- Une rotation infinitésimale du vecteur 7 est composée de
- une rotation infinitésimale d’angle d¢) autour de l’axe 2: d7y, = d¢ rsinf é, = ¢ dt ZAF

- une rotation infinitésimale d’angle d6 autour de &, di, =dfré,=0dt é¢AF

= rotation infinitésimale totale :
dif = dig + dF, = 0dt e, + QAL 2AF = — = U = 06 AT + §p 2AT = (08, + ¢ 2)AT = BAT

- Vitesse angulaire de rotation du repere: w = éé¢ + qb Z
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2.5 Vitesse et accéleration
en coordonnées sphériques (suite)

A A v
- = = \ Z
- Vitesse angulaire de rotation du repere :
- Formule de Poisson appliguée aux vecteurs de base : > €¢
. . ) . . ) 9 | P(T, 9' ¢)
ér =W A€ = 0ég+ psinbé, ~/ T \é,
€og =W N €g = —06&, + Ppcosbéy O : >
€p =W N €y =—¢sinfé, — pcosbéy b i Y
|
X
- Position, vitesse et accélération dans ce repere :
r = Oﬁ =re,
vT=r =7é +1r0ég+rosinbhé,
a=r = ('r — 1762 — r¢? sin? 9) Er accélération radiale
+ (70 + 270 — r$? sin 0 cos 9) €y accelération meridienne
+ (rdsin 0 + 27¢ sin 6 + 2rHh cos 9) é, | accéleration transverse
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2.6 Contraintes et forces de liaison

La dynamique est une discipline de la mécanique classique qui étudie les corps en
mouvement sous l'influence des actions mécaniques (ou forces) qui leur sont appliquées

Déja rencontree: force de pesanteur et frottement avec I’air

- Point mateériel restreint a se déplacer sur un support, par exemple
une courbe ou une surface lisse (fixe ou en mouvement)

- Exemples:

- Pendule mathématique, contraint a rester a une distance constante
d’un point fixe (i.e. sur une surface sphérique centrée sur ce point)

- Wagonnet d’un « grand huit », qui ne doit pas dérailler
- Goutte d’eau coulant sur le pare-brise d’une voiture
- Bille dans un anneau en rotation

- Force de liaison = force exercée sur le point materiel
pour qu’il obéisse a une contrainte géométrique

- toujours perpendiculaire au support
- la force de liaison devient nulle & la contrainte disparait

- Souvent on ne spécifie pas le mécanisme qui exerce la contrainte
(tout ce passe comme si la surface ou la courbe exercait la force de liaison)

- Le force de liaison est a priori inconnue; elle fait partie du probléme a résoudre
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2.6 EX.: Plan incliné sans frottement

N

N = force de « liaison » qui
contraint le point matériel a
rester sur le plan incliné
(perpendiculaire au plan)

Projection sur axe X: 0
Projectionsuraxey: F, = mgcosa —N =0 a= 0
Projection suraxe z.  F, = —mgsina = ma, —gsina

i

y(t) =0; N(t) =mgcosa

1
z(t) = z, —Egsinat2

x(t) = xg



2.6 EX.: le pendule mathéematigue

Une masse P, que on considere punctiforme, est attachéee O . 4
avec une ficelle de masse négligeable au point O. L I,"
On bouge la masse P tel que la ficelle forme un angle ¢, /gb‘ g €
avec la vertical a t, = 0. xpP
A P’instant t, = 0 on laisse la masse P libre de osciller ™. | U
Xy o
La contrainte ou force de liaison est représentéee par la ficelle. F=m g

Si on part avec la ficelle tendue, la ficelle oblige la masse P a
suivre un arc de circonférence (7' = tension de la ficelle)

Quiz

1) Est ce que la période d’oscillation d’un pendule dépend de la masse?

2) Est-ce que la période d’oscillation dépende de I’angle initiale ?

—> demo 286 -> démo 28



https://auditoires-physique.epfl.ch/experiment/16/influence-de-lamplitude-dun-pendule-gravite-sur-la-frequence
https://auditoires-physique.epfl.ch/experiment/286/pendules-simples-masses-differentes

2.6 EX.: le pendule mathématigue

0 4
On essaye de trouver la solution en utilisant le L
repere fixe AT
¢ N/
'~ e P
Repére cartésien fixe: OX § s B P
. €p
zv
F=mg
( — - A oo A .
cospT:- X+ mg- X = mix —T(t)cos¢p + m g = mx
< p—
\ singT - § = myy —T(t)sing = my

Solution compliquée parce que la tension T(t) et I’angle ¢(t) sont des fonctions du temps
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2.6 EX.: le pendule mathématigue

Galilée observe par premier que la période d’oscillation O 4
d’un pendule ne dépend pas de m L
N s = - R AN T II’ ~
Repere cartésien fixe: 0% 9 /gb‘ ey
Repére en rotation: 0é ¢ o~ RP
R . = . ’ ép
2°me loi de Newton z F=ma Xy
L . . L F=mg
En coordonnées cylindriques @ =7 = (p- pg?) €, + (2pp+ pp)é, +Zé,
(= A - A . A ( T _ L 7.2
T-é,+mg- é,=m(p—pp-)é, —T +m gcos¢p = mLg
\ mg- é,=m(pp + 2pP)é; \ —m gsing = mL¢

Le mouvement du pendule ne dépend pas de la masse = — (g Sin (|) = LJ)

Pour des petites oscillations ¢ -0 = sing ~¢ = ¢ - = %¢

Equation d’un oscillateur harmonique

@ (t) = Acos(wyt + @) de période T = i—” =21 |%

0 g 30



2.6 EX.: Luge sur une piste cylindrigue

N>

Repere cartésien fixe:  0Xx y Z
Repere en rotation: 0é é;é,
Contrainte: la luge reste sur lapiste p=Rp=0p=0

—

Pas de support en direction é, (N - &, = 0) et é, (N - &, = 0)

< En coordonnées cylindriques
2/ |t Q=7 = (- pp?) &, + (26p+ p)é, +78,
>
> P
plan %
horizontal maq N4 > s o ioN A
| g N-é,+mg-é,=m(p— pp-)é,
F=md =y mg-é,=m(pd+2pp)é,
Projection |2 \ mg-é, =mzé,

(—N +m g cosacosp = —mR¢?

— m g cosasing = mR¢

AN

mg cos a \ —mgsina =mZ 31



2.6 EX.: Luge sur une piste cylindrigue

(N +m g COS a cos ¢ = —mRp? eg. (1)

. — m g cosasing = mR¢ eg. (2)
£ g 3 L —mgsina =mZ eq. (3)
plan |
horizontal | mg
eg. (3) = Mouvement uniformément accéléré z(t) = —% gsina t?
2) Mouvement du pendule (petites oscil.) ¢(t) = Acos(wt + ¢g)
eq' : g
. )
¢=—¢Ecosa T=_7T=2n g cosa
W R

eg. (1) = Réaction de la paroi de la piste en fonction du temps:

N(t) = m g cos a cos ¢ + mR¢p?
32



2.6 EX.: Bille en equilibre dans un tube
circulaire en rotation

Deux balles de masse différente dans une glissiere tournante: la quelle monte plus haut?
1) Laplus legere
2) Lapluslourde
3) identique

- démo: glissiere hémisphérique 457
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https://auditoires-physique.epfl.ch/experiment/457/glissiere-hemispherique-sur-tige

2.6 EX.: Bille en equilibre dans un tube
circulaire en rotation

anneau de rayon R en

Z rotation autour de 2: @ = @2 Repére cartésien fixe: 0xX 92
N Repére en rotation: 0é,.é,é,
a1 Coordonnées sphériques: r, 8, ¢
0 \9 Contrainte: la bille reste sur I’anneau
| j (r=h f=0 f=o
r p=w, ¢=0
\_, P éé Pas de support en direction é, (N - é, =0)
X
A ’\/\er masse m
€9
T™—0
Vmg'

Forces s’exercant sur la bille:
- Poids de la bille: mg = mg cos(wt — 6) é,. + mg sin(w — 0) é,
- Force de liaison: N = Nré, + N,é,

- démo: glissiere hémisphérique 457
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https://auditoires-physique.epfl.ch/experiment/457/glissiere-hemispherique-sur-tige

2.6 EX.: Bille en equilibre dans un tube
circulaire en rotation

anneau derayon Ren
24 rotation autour de Z: w = ¢2 a3 (F — r6? — ré?sin?6)e,
Coordonnées +(r6 + 2776 — r¢?sin 6 cos 0)é,
sphériques +(r¢ sin @ + 2r¢ sin 6 + 2r¢p0 cos 0)é,

% Zﬁ=md’
U

(N - e, +mg- e, =m(#—rf%—rp2sin2g)e,
o Dille de
€p M Masse m {N-é,+mg:- é,= m(rH + 278 — r¢? sin 6 cos G)ég
™ —0
"mg N-é,+mg-é,=m(rdsin@ + 2r¢sin 6 + 2rp0 cos 6)é
(N-é,+mg-é,=m(r¢sin 7¢ sin r¢8 cos 0)é,
bille en équilibre: 6 = 0; 6 = 0
Contraintes: 7 =0; # =0; ¢ = w; U _ _
5=0;N-6,=0 Solutions possibles:
) _ 1)sinf0=0 (= 6=0oum),
N, —mg cosf = —mr¢?sin*f N, = mg, bille sur l'axe vertical
: g g
9 mg sin@ = —mr¢?sin 6 cos @ — 2)cos = ——=5, cos(m—0) =~ <1=
\ Ny=10 wZ\/g;w—>000—>E
R 2 35






